Reinforcement Learning with Hierarchies of Machines

نویسندگان

  • Ronald Parr
  • Stuart J. Russell
چکیده

We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transferred across problems and in which component solutions can be recombined to solve larger and more complicated problems. Our approach can be seen as providing a link between reinforcement learning and “behavior-based” or “teleo-reactive” approaches to control. We present provably convergent algorithms for problem-solving and learning with hierarchical machines and demonstrate their effectiveness on a problem with several thousand states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Reinforcement Learning with Hierarchies of Machines by Leveraging Internal Transitions

In the context of hierarchical reinforcement learning, the idea of hierarchies of abstract machines (HAMs) is to write a partial policy as a set of hierarchical finite state machines with unspecified choice states, and use reinforcement learning to learn an optimal completion of this partial policy. Given a HAM with deep hierarchical structure, there often exist many internal transitions where ...

متن کامل

Speeding Up HAM Learning with Internal Transitions

In the context of hierarchical reinforcement learning, the idea of hierarchies of abstract machines (HAMs) is to write a partial policy as a set of hierarchical finite state machines with unspecified choice states, and use reinforcement learning to learn an optimal completion of this partial policy. Given a HAM with potentially deep hierarchical structure, there often exist many internal transi...

متن کامل

Concurrent Hierarchical Reinforcement Learning for RoboCup Keepaway

RoboCup Keepaway, originated from the RoboCup soccer simulation 2D challenge, has been widely used as a machine learning benchmark. In this paper, we present a concurrent hierarchical reinforcement learning approach to RoboCup Keepaway. Following the idea of hierarchies of abstract machines (HAMs), we write a partial policy as a HAM from the perspective of a single keeper, run multiple instance...

متن کامل

Signals Reinforcement Inputs Sensory Actions Skill Skill Skill

While the need for hierarchies within control systems is apparent, it is also clear to many researchers that such hierarchies should be learned. Learning both the structure and the component behaviors is a diicult task. The beneet of learning the hierarchical structures of behaviors is that the decomposition of the control structure into smaller transportable chunks allows previously learned kn...

متن کامل

Using Abstract Models of Behaviours to Automatically Generate Reinforcement Learning Hierarchies

In this paper we present a hybrid system combining techniques from symbolic planning and reinforcement learning. Planning is used to automatically construct task hierarchies for hierarchical reinforcement learning based on abstract models of the behaviours’ purpose, and to perform intelligent termination improvement when an executing behaviour is no longer appropriate. Reinforcement learning is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997